Mathematical Sciences Research Center, AT&T Bell Labs, Murray Hill, New Jersey 07974, USA
"The hypothesis that the increase in atmospheric carbon dioxide is related to observable changes in the climate is tested using modern methods of time-series analysis. The results confirm that average global temperature is increasing, and that temperature and atmospheric carbon dioxide are significantly correlated over the past thirty years.
Changes in carbon dioxide content lag those in temperature by five months."
---------------------------
"References
1. | Tyndall, J. Phil. Mag. 22, 160−194; 22, 273−285 (1863). | ||||
2. | Arrhenius, S. Phil. Mag. 41, 237−276 (1896). | ||||
3. | Houghton, R. A. in The Changing Carbon Cycle: A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 175−193 (Springer, New York, 1986). | ||||
4. | Schlesinger, W. H. in The Changing Carbon Cycle: A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 194−220 (Springer, New York, 1986). | ||||
5. | Rotty, R. M. & Marland, G. The Changing Carbon Cycle: A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 474−490 (Springer, New York, 1986). | ||||
6. | Seidel, S. & Keyes, D. Can We Delay a Greenhouse Warming? Rep. No. EPA 23010:4001 (US Environmental Protection Agency, Washington, 1983). | ||||
7. | Budyko, M. I. Climatic Changes Ch. 7 (Waverly, Baltimore, 1977). | ||||
8. | World Meteorological Organization Rep. World Conf. Changing Atmosphere (World Meteorological Organization, Geneva, 1989). | ||||
9. | National Research Council Changing Climate (Natn Acad. Press, Washington, DC, 1983). | ||||
10. | Barnett, T. P. & Schlesinger, M. E. J. geophys. Res. 92, 14772−14780 (1987). | ChemPort | | ||||
11. | Preisendorfer, R. W. & Barnett, T. P. J. atmos. Sci. 40, 1884−1896 (1983). | Article | | ||||
12. | Solow, A. R. J. Clim. appl. Met. 26, 1401−1405 (1987). | ||||
13. | Maddox, J. Nature 334, 9 (1988). | Article | | ||||
14. | Kerr, R. A. Science 244, 1041−1043 (1989). | ||||
15. | Broecker, W. S. Science 245, 451 (1989). | ||||
16. | Schlesinger, M. E. Science 245, 451 (1989). | ||||
17. | Risby, J. Science 245, 451−452 (1989). | ||||
18. | Solow, A. R. & Broadus, J. M. Clim. Change (in the press). | ||||
19. | Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C. & Whorf, T. P. Am. geophys. Un., Geophys. Monogr. 55, 165−236 (1989). | ||||
20. | Gammon, R. H., Komhyr, W. D. & Peterson, J. T. in The Changing Carbon Cycle: A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 1−15 (Springer, New York, 1986). | ||||
21. | Hansen, J. & Lebedeff, S. J. geophys. Res. 92, 13345−13372 (1987). | ISI | | ||||
22. | Shapiro, R. J. atmos. Sci. 36, 1105−1116 (1979). | ||||
23. | Pittock, A. B. Rev. Geophys. Space phys. 16, 400−420 (1978). | ||||
24. | Tukey, J. W. Scripps Inst. Oceanogr. Ref. Ser. 84−5, 100−103 (1984). | ||||
25. | Cleveland, W. S., Freeny, A. E. & Graedel, T. E. J. geophys. Res. 88, 10934−10946 (1983). | ChemPort | | ||||
26. | Priestley, M. B. Spectral Analysis and Time Series (Academic, New York, 1981). | ||||
27. | Brillinger, D. R. Time Series, Data Analysis and Theory (Holt, Rinehart & Winston, New York, 1975). | ||||
28. | Thomson, D. J. Proc. IEEE 70, 1055−1096 (1982). | ISI | | ||||
29. | Park, J., Lindberg, C. R. & Vernon, F. L. III J. geophys. Res. 92, 12675−12684 (1987). | ISI | | ||||
30. | Grenander, U. Ann. math. Statist. 25, 252−272 (1954). | ||||
31. | Brillinger, D. R. Biometrika 76, 23−30 (1989). | ||||
32. | Slepian, D. Bell System Tech. J. 57, 1371−1429 (1978). | ||||
33. | Belsley, D. A., Kuh, E. & Welsch, R. E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity (Wiley, New York, 1980). | ||||
34. | Hays, J. D., Imbrie, J. & Shackleton, N. J. Science 194, 1121−1132 (1976). | ISI | | ||||
35. | Imbrie, J. & Imbrie, J. Z. Science 207, 943−953 (1980). | ISI | | ||||
36. | Pearson, E. S. & Hartley, H. O. Biometrika Tables for Statisticians 3rd edn Vol. 1, (Cambridge University Press, London, 1970). | ||||
37. | Thomson, D. J. & Chave, A. D. Advances in Spectrum Estimation (ed. Haykin, S.) Ch. 2 (Prentice-Hall, Englewood Cliffs, New Jersey, in the press). | ||||
38. | Thomson, D. J. Bell System Tech. J. 56, 1769−1815; 56, 1983−2005 (1977). | ||||
39. | Daniel, C. & Wood, F. S. Fitting Equations to Data (Wiley, New York, 1980). | ||||
40. | Lindberg, C. R. & Park, J. Geophys. J. R. astr. Soc. 91, 795−836 (1987). | ||||
41. | Vernon, F. L. III, thesis, Univ. of California (San Diego) (1989). | ||||
42. | Yule, G. U. & Kendall, M. G. An Introduction to the Theory of Statistics 14th edn (Hafner, New York, 1965). | ||||
43. | Tukey, J. W. in Advanced Seminar on Spectral Analysis of Time Series (ed. Harris, B.) 25−46 (Wiley, New York, 1967). | ||||
44. | Bloomfield, P. Fourier Analysis of Time Series: An Introduction (Wiley, New York, 1976). | ||||
45. | Freiberger, W. F. in Time Series Analysis (ed. Rosenblatt, M.) 244−259 (Wiley, New York, 1963). | ||||
46. | Panofsky, H. A. in Advanced Seminar on Spectral Analysis of Time Series (ed. Harris, B.) 109−132 (Wiley, New York, 1967). | ||||
47. | Thomson, D. J. Phil. Trans. R. Soc. (in the press). | ||||
48. | Knopoff, L. The Moon Ch 7 (Reidel, Dordrecht, 1970) | ||||
49. | Kendall, M. & Stuart, A. The Advanced Theory of Statistics 4th edn, Vol 1, Ch. 16 (Macmillan, New York, 1979)." |
Fall 2009, NASA followup study funded by US taxpayers, says CO2 lag time may be longer, that oceans may hide/effect some heat:
"A Re-evaluation of the Coherence Between Atmospheric Carbon Dioxide and Global-Average Temperatures at Interannual Time Scales," Park, J. J.
American Geophysical Union, Fall Meeting 2009, abstract #GC24A-02
Frequency-dependent coherence between atmospheric CO2 and historical temperatures reveals climate feedbacks within Earth's carbon cycle. Kuo et al (1990) showed that CO2 lagged global-average temperatures by 5 months at interannual periods during 1958-1988, but this relationship has changed over time. Since 1979, at Mauna Loa and other observation sites, interannual coherence exhibits a 90o phase lag that suggests a direct correlation between temperatures and the time-derivative of CO2, not a simple time-lagged response. The coherence transition can be explained if the response time of CO2 to global temperature fluctuations has lengthened from 5-6 months to at least 15 months. This longer response time may reflect saturation of the oceanic carbon sink, but a transient shift in ocean circulation may also play a role.Coherent annual-cycle fluctuations in CO2 and temperature are evident in the 1958-1988 time series, but not the 1979-2008 interval. Coherence of CO2 with gridpoint temperature anomalies suggests that interannual temperature-CO2 correlations are dominated by the tropical oceans. The large influence of the terrestrial biosphere on atmospheric CO2, therefore, is not mediated significantly by interannual temperature anomalies. Kuo, C., C. Lindberg, and D. J. Thomson (1990), Coherence established between atmospheric carbon dioxide and global temperature, Nature, 343, 709--714.
Keywords: [0330] ATMOSPHERIC COMPOSITION AND STRUCTURE / Geochemical
cycles, [0365] ATMOSPHERIC COMPOSITION AND STRUCTURE / Troposphere:
composition and chemistry, [1610] GLOBAL CHANGE / Atmosphere, [1616]
GLOBAL CHANGE / Climate variability
The ADS is Operated by the Smithsonian Astrophysical Observatory under NASA Grant NNX09AB39G"
In 2012 $1 billion a day was "invested" in the notion of global warming.
Real problems were left to starve.
.
No comments:
Post a Comment